Insight into the Molecular Mechanism of the Transcriptional Regulation of amtB Operon in Streptomyces coelicolor

نویسندگان

  • Zhendong Li
  • Xinqiang Liu
  • Jingzhi Wang
  • Ying Wang
  • Guosong Zheng
  • Yinhua Lu
  • Guoping Zhao
  • Jin Wang
چکیده

In Streptomyces coelicolor, amtB transcription is promptly regulated by the global nitrogen regulator GlnR. Although the GlnR binding cis-element has been characterized in amtB promoter, consisting of three GlnR boxes of a3-b3, a1-b1, and a2-b2, its role in GlnR-mediated transcriptional regulation remains unclear. Here, we showed that GlnR had different binding affinity against each pair of GlnR binding sites in amtB promoter (i.e., a3-b3, a1-b1, and a2-b2 sites), and GlnR was able to bind a3-b3 and a1-b1, respectively, but not a2-b2 alone. Consistently, a2 was not a typical GlnR binding site and further experiments showed that a2 was non-essential for GlnR-mediated binding in vitro and transcriptional regulation in vivo. To uncover the physiological role of the three GlnR boxes, we then mutated the wild-type amtB promoter to a typical GlnR-binding motif containing two GlnR boxes (a3-b3-a2-b2), and found although the transcription of the mutated promoter could still be activated by GlnR, its increasing rate was less than that of the wild-type. Based on these findings, one could conclude that the three GlnR boxes assisted GlnR in more promptly activating amtB transcription in response to nitrogen limitation, facilitating bacterial growth under nitrogen stresses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Coordinated Positive Regulation of Topoisomerase Genes Maintains Topological Homeostasis in Streptomyces coelicolor

Maintaining an optimal level of chromosomal supercoiling is critical for the progression of DNA replication and transcription. Moreover, changes in global supercoiling affect the expression of a large number of genes and play a fundamental role in adapting to stress. Topoisomerase I (TopA) and gyrase are key players in the regulation of bacterial chromosomal topology through their respective ab...

متن کامل

Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein.

The dnaK operon of Streptomyces coelicolor contains four genes (5'-dnaK-grpE-dnaJ-hspR). The fourth gene encodes a novel heat shock protein, HspR, which appears so far to be unique to the high-G+C actinomycete group of bacteria. HspR binds with high specificity to three inverted repeat sequences in the promoter region of the S. coelicolor dnaK operon, strongly suggesting a direct role for HspR ...

متن کامل

Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnII and amtB expression by the response regulator PhoP

Bacterial growth requires equilibrated concentration of C, N and P sources. This work shows a phosphate control over the nitrogen metabolism in the model actinomycete Streptomyces coelicolor. Phosphate control of metabolism in Streptomyces is exerted by the two component system PhoR-PhoP. The response regulator PhoP binds to well-known PHO boxes composed of direct repeat units (DRus). PhoP bind...

متن کامل

Nitrogen control in Mycobacterium smegmatis: nitrogen-dependent expression of ammonium transport and assimilation proteins depends on the OmpR-type regulator GlnR.

The effect of nitrogen regulation on the level of transcriptional control has been investigated in a variety of bacteria, such as Bacillus subtilis, Corynebacterium glutamicum, Escherichia coli, and Streptomyces coelicolor; however, until now there have been no data for mycobacteria. In this study, we found that the OmpR-type regulator protein GlnR controls nitrogen-dependent transcription regu...

متن کامل

Cross‐talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces

Limitation of different nutrients in Streptomyces coelicolor A3(2) triggers nutrient-stress responses, mediated by PhoP, GlnR, AfsR and other regulators, that are integrated at the molecular level and control secondary metabolite biosynthesis and differentiation. In addition, utilization of chitin or N-acetylglucosamine regulates secondary metabolite biosynthesis by a mechanism mediated by DasR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018